Роботизация и искусственный интеллект делают наемных работников просто ненужными. Экономика протеста: зона опасности цифровой эпохи.

АЛЕКСАНДР ЗОТИН, старший научный сотрудник ВАВТ.

Цифровая эра ознаменовалась удивительным сочетанием суперсовременных и средневековых технологий. Последние пока используются людьми, но скоро люди окажутся не нужны.

99,9% классовой борьбы вовсе не революции. В основном борьба идет в скрытой форме рутинного ежедневного сопротивления, которое американский политолог Джеймс Скотт называл оружием слабых. Однако его ценность и возможная трансформация во что-то более серьезное во многих случаях определяются существующей технологией и чисто практическими возможностями применения.

Средний класс, достигший пика своего могущества в 1970-х, медленно, но верно опускается до сегодняшнего состояния прекариата. Под прекариатом (от английского precarious — «нестабильный», «неустойчивый», объединенного со словом «пролетариат») автор термина, британский экономист Гай Стэндинг, понимает новый класс, для которого характерны отсутствие постоянной занятости, усечение социальных гарантий и гражданских прав.

Автоматизация, аутсорсинг и технологическое изменение баланса сил уже привели к резкому ослаблению «слабых».

И есть все предпосылки для того, что в недалеком будущем эволюция пролетариата в прекариат продолжится и последний станет «ненужнориатом».

Роботизация и внедрение искусственного интеллекта (ИИ) сделают «слабых» просто ненужными. До такой степени, до которой изобретение двигателя внутреннего сгорания сделало ненужными лошадей в начале ХХ века.

Исследований, посвященных перспективам замещения людей роботами по отраслям и отдельным экономикам, уже сотни, если не тысячи. И выводы их похожи. Если верить экономистам Карлу Фрею и Майклу Осборну, в США, стране—лидере технического прогресса, к 2033 году под натиском роботизации рискует исчезнуть 47% рабочих мест. Мировой банк подсчитал, что для Китая эта доля может составить и вовсе 77%. Международная организация труда считает, что даже в таких странах, как Камбоджа, Индонезия, Филиппины, Вьетнам и Таиланд, 56% работников подпадают под риск автоматизации (см. подробнее «Робовладельческий строй»).

Многие экономисты, в том числе российские, склонны полагать, что опасения преувеличены. Их критику можно свести к тезису о том, что через процесс автоматизации мировая экономика проходит непрерывно как минимум с начала первой промышленной революции, но в итоге ничего страшного не происходит — создаются новые рабочие места.

Однако критики не вполне осознают, что искусственный интеллект способен заместить «навыки Поланьи», которые до последнего времени считались исключительно человеческими (распознавание изображений и звука, их алгоритмическая обработка и трансформация, тонкая моторика). Сфер деятельности, где человек может быть более продуктивным, чем машина, видимо, будет все меньше и меньше.

Как отмечает специалист по ИИ Сергей Марков, вероятность автоматизации той или иной профессии в кратко- или среднесрочной перспективе зависит во многом от трех основных признаков трудового процесса — степени шаблонности и однообразия выполняемых работником операций, осуществления взаимодействий с клиентами, контрагентами и другими участниками бизнес-процесса при помощи стандартных интерфейсов (например, стандартных форм документов, шаблонных коммуникаций через голосовые или текстовые каналы связи) и наличия накопленных массивов данных, которые могут быть использованы для обучения системы искусственного интеллекта, призванной заменить работника.

Повелители алгоритмов и рикши XXI века

Образование прекариата уже давно находится в сфере интересов экономистов. Между тем бурно растущая в последние годы цифровая экономика способна дать фору всем этим процессам. Здесь наблюдаются тенденции еще более драматического, чем в последние 50 лет, смещения баланса сил в ущерб «слабым».

В случае с цифровой экономикой, или, как ее еще называют, «платформенной» либо gig-экономикой, владельцы капитала — это, по сути, владельцы алгоритмов. У многих, если не у большинства современных хайтек-компаний и тем более техностартапов толком нет никаких материальных активов. Основной их актив зачастую алгоритм и средство коммуникации — платформа, в основном в виде мобильного приложения для той или иной деятельности. Классический случай здесь, конечно, Uber.

Алгоритмизированная структура gig-экономики позволяет обойти все формальные права наемных работников, доставшиеся им в наследство от «угольной демократии» Митчелла, — медицинское страхование, минимальную зарплату, пенсионное обеспечение, формальный письменный контракт, выходное пособие, социальный пакет и т. п.

В штате Uber работает всего несколько тысяч сотрудников, а по скачанному в смартфоне алгоритму-приложению на компанию по факту трудится порядка 2 млн водителей по всему миру.

Немногочисленные штатные сотрудники Uber получают неплохие зарплаты, хотя их благосостояние несравнимо с доходами собственников компании. А вот 2 млн водителей имеют медианный доход чуть больше $150 в месяц. Uber не считает водителей своими сотрудниками и не обеспечивает их каким-либо социальным пакетом.

Появление класса «рикш XXI века», работающих на цифровую экономику, — это, по сути, внутренний аутсорсинг, обнаружение капиталом в развитых странах рабочей силы, которой можно предоставлять условия труда, практически сравнимые с таковыми в Бангладеш или Камбодже. Внутренний аутсорсинг напоминает процесс внутренней колонизации (см. книгу Александра Эткинда «Внутренняя колонизация. Имперский опыт России»). Особенно выделяется применение к «автохтонному» населению практик, отработанных в колониях (сейчас — в современных странах аутсорсинга).

Все это очень неплохо для владельцев алгоритмов и клиентов, но одновременно это тенденция, резко усиливающая прекариатизацию, поляризацию рабочих мест, неравенство и дальнейшее ослабление «слабых». В странах с сильными сетями соцзащиты (Нидерланды, Франция, Германия, Швеция) уберизация пока слабо угрожает размыванию среднего класса, но вот для США и некоторых других государств ситуация может стать более острой уже в ближайшее время.

В идеале всесильному алгоритму «рикши XXI века» нужны лишь как временное решение, до скорого появления более совершенных технологий. Машины без водителей — дело ближайшего будущего, и акционерам Uber 2 млн самозанятых скоро окажутся не нужны: у них уже есть капитал, на который можно будет купить или арендовать многомиллионный парк автономных машин и добавить к ним алгоритм, предоставляющий транспорт по запросу клиента.

Еще более простая конфигурация компании — один только алгоритм, позволяющий собственникам автономных автомобилей (например, крупным автоконцернам) предоставлять функцию мобильности по запросу (в этом случае Uber будет похож на Airbnb — компанию, состоящую, по сути, из одного алгоритма, связывающего по миру владельцев недвижимости).

Кстати, приставший к Uber, Airbnb и некоторым похожим компаниям термин sharing economy («шеринговая экономика», то есть экономика, основанная на том, что агенты делятся друг с другом тем или иным благом) часто вводит в заблуждение по поводу ее якобы альтруистической природы. Никто ни с кем просто так ничем не делится, просто алгоритм и приложение позволяют рационализировать использование того или иного блага и увеличить отдачу. Например, тот же частный автомобиль эксплуатируется всего около 10% времени, а остальные 90% он простаивает (как и некоторая недвижимость). По сути, такая оптимизация ограничена в большинстве случаев частными домохозяйствами. В промышленности и в значительной степени в сфере услуг загрузка мощностей и так давно оптимизирована, а в домохозяйствах явный кандидат на оптимизацию именно автомобиль (в чуть меньшей степени — недвижимость). Сложно себе представить попытку «расшерить» телевизор в доме, кухонную технику или одежду.

Так что сам по себе эффект шеринговой экономики ограничен, хотя и важен для отдельных ниш (прежде всего для частного владения автомобилями).

«Коммерсантъ» от 08.07.2018.